|
A0A087WS67 (Uniprot 2018_03 genome)
(show help)
For a sequence (see Protein sequence) in target, dcGO predictor has the following procedures to predict the ontology terms of the target:
First, obtain Domain architecture and its residual domains and supra-domains from the SUPERFAMILY database.
Then, use the domain-centric annotations to predict the ontology terms of the target:
- If a target contained a domain/supra-domain, then all ontology terms associated to that domain/supra-domain are transferred to the target (together with hypergeometric score, h-score);
- When a target-to-term transfer is supported by one or more residential domains/supra-domains, sum up h-scores to calculate predictive score (p-score);
- The p-score is then rescaled to the range of 0-1. For each namespace (e.g., three sub-ontologies for GO), p-score=(SUM-MIN)/(MAX-MIN), where SUM is the sum of all h-scores to support a term transferred to the target, MIN and MAX are respectively the minimum and maximum of SUM over a whole list of predicted terms for the target;
Finally, the predictive score being rescaled is used to rank the predictions. The higher value of the p-score indicates the more evident the prediction is. In the dcGO, each ontology has a slim version on its own, containing ontological terms at four levels of increasing granularity (that is, being highly general, general, specific, and highly specific). Listed in the table are the top 5 predictions for each specificity and for each namespace. In addition to those restricted by the term specificity, i.e., Export prediction (slim version), the full list of predictions are also provided for the download, i.e., Export prediction (full version).
Protein sequence
Comment |
(tr|A0A087WS67|A0A087WS67_MOUSE) Voltage-dependent L-type calcium channel subunit alpha {ECO:0000256|RuleBase:RU003808} KW=Complete proteome; Reference proteome OX=10090 OS=Mus musculus (Mouse). GN=Cacna1c OC=Muroidea; Muridae; Murinae; Mus; Mus. |
Sequence length |
2164 |
Sequence |
MVNENTRMYVPEENHQGSNYGSPRPAHANMNANAAAGLAPEHIPTPGAALSWQAAIDAAR
QAKLMGSAGNATISTVSSTQRKRQQYGKPKKQGGTTATRPPRALLCLTLKNPIRRACISI
VEWKPFEIIILLTIFANCVALAIYIPFPEDDSNATNSNLERVEYLFLIIFTVEAFLKVIA
YGLLFHPNAYLRNGWNLLDFIIVVVGLFSAILEQATKADGANALGGKGAGFDVKALRAFR
VLRPLRLVSGVPSLQVVLNSIIKAMVPLLHIALLVLFVIIIYAIIGLELFMGKMHKTCYN
QEGIIDVPAEEDPSPCALETGHGRQCQNGTVCKPGWDGPKHGITNFDNFAFAMLTVFQCI
TMEGWTDVLYWVNDAVGRDWPWIYFVTLIIIGSFFVLNLVLGVLSGEFSKEREKAKARGD
FQKLREKQQLEEDLKGYLDWITQAEDIDPENEDEGMDEDKPRNRGAPAGLHDQKKGKFAW
FSHSTETHVSMPTSETESVNTENVAGGDIEGENCGARLAHRISKSKFSRYWRRWNRFCRR
KCRAAVKSNVFYWLVIFLVFLNTLTIASEHYNQPHWLTEVQDTANKALLALFTAEMLLKM
YSLGLQAYFVSLFNRFDCFIVCGGILETILVETKIMSPLGISVLRCVRLLRIFKITRYWN
SLSNLVASLLNSVRSIASLLLLLFLFIIIFSLLGMQLFGGKFNFDEMQTRRSTFDNFPQS
LLTVFQILTGEDWNSVMYDGIMAYGGPSFPGMLVCIYFIILFICGNYILLNVFLAIAVDN
LADAESLTSAQKEEEEEKERKKLARTASPEKKQEVMEKPAVEESKEEKIELKSITADGES
PPTTKINMDDLQPSENEDKSPHSNPDTAGEEDEEEPEMPVGPRPRPLSELHLKEKAVPMP
EASAFFIFSPNNRFRLQCHRIVNDTIFTNLILFFILLSSISLAAEDPVQHTSFRNHILFY
FDIVFTTIFTIEIALKMTAYGAFLHKGSFCRNYFNILDLLVVSVSLISFGIQSSAINVVK
ILRVLRVLRPLRAINRAKGLKHVVQCVFVAIRTIGNIVIVTTLLQFMFACIGVQLFKGKL
YTCSDSSKQTEAECKGNYITYKDGEVDHPIIQPRSWENSKFDFDNVLAAMMALFTVSTFE
GWPELLYRSIDSHTEDKGPIYNYRVEISIFFIIYIIIIAFFMMNIFVGFVIVTFQEQGEQ
EYKNCELDKNQRQCVEYALKARPLRRYIPKNQHQYKVWYVVNSTYFEYLMFVLILLNTIC
LAMQHYGQSCLFKIAMNILNMLFTGLFTVEMILKLIAFKPKHYFCDAWNTFDALIVVGSI
VDIAITEVHPAEHTQCSPSMSAEENSRISITFFRLFRVMRLVKLLSRGEGIRTLLWTFIK
SFQALPYVALLIVMLFFIYAVIGMQVFGKIALNDTTEINRNNNFQTFPQAVLLLFRCATG
EAWQDIMLACMPGKKCAPESEPSNSTEGETPCGSSFAVFYFISFYMLCAFLIINLFVAVI
MDNFDYLTRDWSILGPHHLDEFKRIWAEYDPEAKGRIKHLDVVTLLRRIQPPLGFGKLCP
HRVACKRLVSMNMPLNSDGTVMFNATLFALVRTALRIKTEGNLEQANEELRAIIKKIWKR
TSMKLLDQVVPPAGDDEVTVGKFYATFLIQEYFRKFKKRKEQGLVGKPSQRNALSLQAGL
RTLHDIGPEIRRAISGDLTAEEELDKAMKEAVSAASEDDIFRRAGGLFGNHVTYYQSDSR
GNFPQTFATQRPLHINKTGNNQADTESPSHEKLVDSTFTPSSYSSTGSNANINNANNTAL
GRFPHPAGYSSTVSTVEGHGPPLSPAVRVQEAAWKLSSKRCHSRESQGATVNQEIFPDET
RSVRMSEEAEYCSEPSLLSTDMFSYQEDEHRQLTCPEEDKREIQPSPKRSFLRSASLGRR
ASFHLECLKRQKDQGGDISQKTALPLHLVHHQALAVAGLSPLLQRSHSPTTFPRPCPTPP
VTPGSRGRPLRPIPTLRLEGAESSEKLNSSFPSIHCSSWSEETTACSGSSSMARRARPVS
LTVPSQAGAPGRQFHGSASSLVEAVLISEGLGQFAQDPKFIEVTTQELADACDMTIEEME
NAADNILSGGAQQSPNGTLLPFVNCRDPGQDRAVAPEDESCAYALGRGRSEEALADSRSY
VSNL
|
Jump to [ Top · Protein sequence · Domain architecture ]
Domain architecture

1
Jump to [ Top · Protein sequence · Domain architecture ]
|
  
|